Recent Updates Toggle Comment Threads | Keyboard Shortcuts

  • asla staff 2:28 pm on July 5, 2016 Permalink | Reply  

    Tree and Soil Research Blog Site Launched! 

    Research supported design for soils and trees. Photo credit: James Urban

    Research supported design for soils and trees.
    Photo credit: James Urban

    For the past year, the Tree and Soil Research Subcommittee of ASLA, comprised of Jim Urban, FASLA, Chair, José Almiñana, FASLA, Eric Kramer, ASLA, and Peg Staeheli, FASLA,  has been working on ways to engage ASLA members in tree and soil research. This includes making the existing research more easily accessible to members, helping them to incorporate research into their own practice, and encouraging members to participate in new research efforts. To that end, the subcommittee, with the support of ASLA staff, is launching the Tree and Soil Research Blog to serve as a platform for discussions on tree and soil research. The site is intended to allow members to ask questions, post their own experiences related to research, develop community discussions and research-based best practices, and give researchers the opportunity to post their work for review and discussion.

    (More …)

    • Carl R. Kelemen, RLA, FASLA 1:39 pm on August 21, 2016 Permalink | Reply

      Like the site. I hope to see this grow and become even more valuable. I have learned several key things that will be incorporated into my specs and construction documents already.

      Keep up the good work.


    • Carl R. Kelemen, RLA, FASLA 1:53 pm on August 21, 2016 Permalink | Reply

      Thanks for setting this up. I hope it will provide much needed information and guidance for the profession. in reading the current posts, I have already picked up some pointers that I will incorporate into my specifications and construction documents.


    • daniel straub 8:19 pm on October 5, 2016 Permalink | Reply

      Excellent… with all of the new energy associated with higher-density mixed use development, complete streets, and green infrastructure, this blog will be a very valuable resource for many. Thank you.


  • Lauren Mandel 9:59 pm on May 26, 2016 Permalink | Reply
    Tags: , ,   

    Macro to Micro: Scalable Urban Habitat 

    McCormack Post Office and Courthouse Building green roof in Boston, designed by Andropogon Associates. Photo credit J. Nystedt.

    McCormack Post Office and Courthouse Building green roof in Boston,
    designed by Andropogon Associates.
    Photo credit: J. Nystedt.

    In 1998 Leslie Sauer Jones wrote The Once and Future Forest: A Guide to Forest Restoration Strategies. Embedded within the book’s forward, landscape architect Ian McHarg implored: “We must participate, with action and all the experience we can bring” in order to attempt to reverse environmental degradation and we can no longer expect our actions to be reversed with inaction. He further suggested that we embrace, “important havens, such as the interstices of cities” as critical canvasses for habitat enhancement and expansion for our native plants and animals.

    Within our cities, large, contiguous tracts of vegetation, such as urban forests and riverfront corridors, offer critical ecological value potential. However, in more densely developed fragments of the city, where landscape design increasingly occurs, researchers are discovering that purposely selected woody plants can similarly provide animal species with viable urban habitat. Conceptualizing the ecological value of these urban interstices may be a function of perspective, or scale.

    (More …)

  • James Urban FASLA 12:57 pm on May 23, 2016 Permalink | Reply

    Retaining soil structure to improve soil 

    Unscreened soil harvesting image: James Urban

    Unscreened soil harvesting
    Photo credit: James Urban

    Soil structure (how soil particles are held together to form larger structures within the soil) is recognized as an important property of a healthy soil. Grading, tilling, soil compaction and screening soils during the soil processing and mixing process damages structure.  Structure makes significant contributions to improving root, air and water movement thru the soil. Soil screening is extremely damaging to structure but is included in most soil specifications.

    Why do we screen soils and what happens if we do not? Prior to the mid 1970’s soils were rarely screened and landscape plants performed quite well.  Installed soil was moved with clumps or peds throughout the stockpile. In the last 15-20 years farmers who have stopped tilling their soil have found significant improvements in soil performance. Several new research projects suggest that elimination of the screening and tilling processes in favor of mixing techniques or soil fracturing that preserve clumps of residual soil structure may improve landscape soils.

    (More …)

    • Aris W. Stalis 10:49 pm on July 6, 2016 Permalink | Reply

      This topic is near and dear to me – regardless of how much we put in specs, this is often ignored. At times, it is because earth moving is in the Civil scope, or the requirements are simply ignored. Construction managers and contractors are concerned with building construction, and ignore the site. My plan is to request photographic documentation of the process – photo, and send via email. Quick, easy, no need for reports so it will not drive up cost. Additionally, the need to be free of weed seed in compost is also a bit of a challenge – I look forward to hearing from others on that topic.


  • Eric Kramer, ASLA 2:56 pm on May 19, 2016 Permalink | Reply
    Tags: Eric Kramer   

    Let’s Dig: crowd-sourcing data on urban soil performance 

    A soil core of sand-based structural soil Photo credit:

    A soil core of sand-based structural soil

    Data, data, data.

    We know that all good science is based on adequate data. And if you’re reading this page, you probably also already know there is a lack of adequate data when it comes to the real-world performance of urban tree planting soils. This post is your chance to change that and add your own information to a shared database of soil performance data.

    A bit of background: In 2014 we (Eric Kramer, ASLA, and Stephanie Hsia of ReedHilderbrand; Robert Uhlig, ASLA, of Halvorson Design; Bryant Scharenbroch, PhD of University of Wisconsin – Stevens Point; and Kelby Fite, PhD of Bartlett Research Labs) undertook a micro-study of seven sites in Boston — constructed urban landscape projects anywhere from 5 to 45 years old. Each project took a pro-active approach to designed soil systems, using suspended pavements, Cornell University structural soils, or sand-based soils. We took soil cores, recorded soils horizons, took lab samples and compared findings to what we knew about what had been installed. We also assessed the performance of the trees over time.

    (More …)

  • James Urban FASLA 2:56 pm on May 19, 2016 Permalink | Reply

    Nursery Standards – Rootstock Problems and Specification 

    Roots properly pruned with no roots above the root collar Photo credit: James Urban

    Roots properly pruned with no roots above the root collar
    Photo credit: James Urban

    Stem girdling roots, kinked roots, J roots, T roots, and root collars buried deeply in the root package are one of the principle reasons whey trees and large shrubs fail to recover from transplanting or decline and even die at a young age after planting. These problems are typically created in the nursery by practices that do not produce plants with radial root architecture and place the root collar close to the surface of the soil. As a plant moves thru the production process from propagation to delivery at the site, there are many opportunities for root problems to develop in the plant.

    Most plants are started in small containers and then gradually moved into larger containers. If the plant is sold in a container there may be three or four different container sizes. Each of these containers may result in a series of roots circling around the edges of the pot forming circling roots. Any of the circling roots above the root color can eventually choke the tree. Other roots may be deflected from the bottom of the container and grow upward to the surface forming a sharp kink in a root that may eventually become an important structural root. If these misshapen roots are not pruned at each shift in pot size they form an imprint of constricting roots in the next container. As trees are repotted they are also often placed too deeply in the next pot. Trees lined in the field may also be buried in the soil. This places the roots too deep in the soil where oxygen is less available at a critical point in the trees development.

    (More …)

    • Aris W. Stalis 10:17 pm on July 6, 2016 Permalink | Reply

      One thing about this, is I am trying to upload image associated with discussion, and not working to well, or I just am missing something. Instead of new post, I wish to add to the discussion.


    • Aris W. Stalis 10:21 pm on July 6, 2016 Permalink | Reply

      Further trying of this tool – we find we cannot be on site for plantings. The result is a need to dig up the plants. Messy, since we disturb the “perfect mulch circle” hiding problems, but that is what we have to do to see if it was installed properly.


    • James Urban FASLA 1:12 pm on July 21, 2016 Permalink | Reply

      Bringing these ideas into the work of LA’s is going to be difficult but is not impossible. Using the referenced specifications and details will give you the basis to reject plants and get plants modified. But getting the time and fees to actually do the field inspections is the tough part. In the end it will fall to how committed is the designer to delivering sustainable quality products to their clients. But atlas the above is a start in the process and an new tool to use.


  • Lauren Mandel 1:10 pm on May 17, 2016 Permalink | Reply
    Tags: , ,   

    Urban Plants & Soil as Stormwater Management Workhorses 

    Shoemaker Green at the University of Pennsylvania, designed by Andropogon Associates with stormwater engineering by Meliora Design. Photo credit Barrett Doherty

    Shoemaker Green at the University of Pennsylvania, designed by Andropogon Associates with stormwater engineering by Meliora Design.
    Photo credit Barrett Doherty

    When high-intensity rainfall events roll through cities, particularly those with combined sewer systems, peak flows increasingly overwhelm grey infrastructure, compromise water quality, and induce sedimentation and erosion. New research suggests that engineered soil and purposely selected plants within green infrastructure may help offset these flows by offering more benefit than most stormwater engineering models and municipalities acknowledge.

    A handful of progressive entities – like the Chesapeake Stormwater Network and the Commonwealth of Virginia – now award extra stormwater credit for management approaches that deploy high-performance engineered soils, dense and varied planting palettes, or an inter-connected series of green infrastructure elements. More research is needed, however, to mobilize engineers, designers, and policy makers to rely more heavily on the “green” in green infrastructure.

    (More …)

    • Lauren Mandel 2:38 pm on July 21, 2016 Permalink | Reply

      Thank you, Jim! We think this topic is relevant to urbanites and urban stormwater policy alike.


    • Trevor Kimball 9:01 pm on October 7, 2016 Permalink | Reply

      I’m not sure if this is the right place to post this, but I wanted to get some feedback on issues related to stormwater infiltration/management in planting beds along a roadway, especially in the Intermountain West region. I figured this could be a good forum to possibly get some answers.

      1. What is the right way to deal with high clay content in soil for infiltration areas? What are appropriate procedures for amending the existing soil in these types of situations?
      2. How do you deal with chemicals from roadway runoff, especially high salt concentrations from winter road maintenance on a busy street? If irrigation is in place (for use when needed), is there procedure for “flushing” these types of contaminants through the soil? Or is it simply handled by selecting the appropriate plants for the situation, with the expectation that they will be resilient enough to withstand such chemicals?

      I apologize if these seem to be simple or naïve questions. I have read a lot of information concerning green infrastructure, but don’t have a lot of experience with it and am trying to become more educated so I can have the correct approach when working on these types of projects. I would appreciate anyone’s insight who may have expertise in this area.



Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc